The nanomechanical signature of breast cancer.
نویسندگان
چکیده
Cancer initiation and progression follow complex molecular and structural changes in the extracellular matrix and cellular architecture of living tissue. However, it remains poorly understood how the transformation from health to malignancy alters the mechanical properties of cells within the tumour microenvironment. Here, we show using an indentation-type atomic force microscope (IT-AFM) that unadulterated human breast biopsies display distinct stiffness profiles. Correlative stiffness maps obtained on normal and benign tissues show uniform stiffness profiles that are characterized by a single distinct peak. In contrast, malignant tissues have a broad distribution resulting from tissue heterogeneity, with a prominent low-stiffness peak representative of cancer cells. Similar findings are seen in specific stages of breast cancer in MMTV-PyMT transgenic mice. Further evidence obtained from the lungs of mice with late-stage tumours shows that migration and metastatic spreading is correlated to the low stiffness of hypoxia-associated cancer cells. Overall, nanomechanical profiling by IT-AFM provides quantitative indicators in the clinical diagnostics of breast cancer with translational significance.
منابع مشابه
Mechanical Spectral Signatures of Malignant Disease? A Small-Sample, Comparative Study of Continuum vs. Nano-Biomechanical Data Analyses
Thin sections from human breast biopsies were employed to perform a differential analysis of the ultrasound spectral responses from invasive ductal carcinoma and normal tissue. A non-destructive testing methodology was employed, yielding the reflection coefficients as function of frequency in the clinical ultrasound range. The spectral responses were simulated both in the context of continuum a...
متن کاملNanomechanical Property Maps of Breast Cancer Cells As Determined by Multiharmonic Atomic Force Microscopy Reveal Syk-Dependent Changes in Microtubule Stability Mediated by MAP1B
The Syk protein-tyrosine kinase, a well-characterized modulator of immune recognition receptor signaling, also plays important, but poorly characterized, roles in tumor progression, acting as an inhibitor of cellular motility and metastasis in highly invasive cancer cells. Multiharmonic atomic force microscopy (AFM) was used to map nanomechanical properties of live MDA-MB-231 breast cancer cell...
متن کاملAcquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods
Background: Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo (MC) codes are the best...
متن کاملGastric Cancer MicroRNAs Meta-signature
Gastric cancer (GC) is one of the most common types of cancer and the second leading cause of cancer-associated mortality. Identification of novel biomarkers is critical to prolonging patient survival. MicroRNAs (miRNAs) proved to play diverse roles in the physiological and pathological state in cancers including GC. Herein we were aimed at performing a meta-analysis on miRNA profiling studies ...
متن کاملRisk Factors of Breast Cancer in Kuwait: Case-Control Study
Background: Breast cancer incidence has increased rapidly inKuwait, but there haven’t been any studies investigating the recognized risk factors of breast cancer inKuwait. The aim of the study was to investigate breast cancer risk factors among women inKuwait. Methods: A case-control study was conducted in Kuwait from May 2003 to March 2004 using a questionnaire including socio-demographic data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature nanotechnology
دوره 7 11 شماره
صفحات -
تاریخ انتشار 2012